TRPV3 Channel in Keratinocytes in Scars with Post-Burn Pruritus
نویسندگان
چکیده
Post-burn pruritus is a common and distressing sequela of burn scars. Empirical antipruritic treatments usually fail to have a satisfactory outcome because of their limited selectivity and possible side effects. Therefore, novel drug targets need to be identified. Here, we aimed to investigate the possible role of protease-activated receptor 2 (PAR2) and transient receptor potential vanniloid 3 (TRPV3), along with the relation of TRPV3 to thymic stromal lymphopoietin (TSLP). Specimens from normal (unscarred) or burn-scarred (with or without pruritus) tissue were obtained from burn patients for this study. In each sample, the keratinocytes were isolated and cultured, and the intracellular Ca2+ level at the time of stimulation of each factor was quantified and the interaction was screened. PAR2 function was reduced by antagonism of TRPV3. Inhibiting protein kinase A (PKA) and protein kinase C (PKC) reduced TRPV3 function. TSLP mRNA and protein, and TSLPR protein expressions, increased in scars with post-burn pruritus, compared to scars without it or to normal tissues. In addition, TRPV1 or TRPV3 activation induced increased TSLP expression. Conclusively, TRPV3 may contribute to pruritus in burn scars through TSLP, and can be considered a potential therapeutic target for post-burn pruritus.
منابع مشابه
Increased expression of three types of transient receptor potential channels (TRPA1, TRPV4 and TRPV3) in burn scars with post-burn pruritus.
Post-burn pruritus is a common distressing consequence of burn wounds. Empirical treatment often fails to have a satisfactory outcome on post-burn pruritus, as the mechanism of post-burn pruritus has not been fully elucidated. The aim of this study was to evaluate the manifestation of transient receptor potential (TRP) channels in post-burn pruritus. Fifty-one burn patients with (n=33) or witho...
متن کاملThe Ca2+-Permeable Cation Transient Receptor Potential TRPV3 Channel: An Emerging Pivotal Target for Itch and Skin Diseases.
Temperature-sensitive transient receptor potential (TRP) channels such as TRPA1 and TRPV1 have been identified as downstream ion channel targets in the transduction of itch. As a member of the temperature-sensitive TRP family, the Ca2+-permeable nonselective cation channel TRPV3 is expressed abundantly in skin keratinocytes. Recent identification of gain-of-function mutations of human TRPV3 fro...
متن کاملSupercooling Agent Icilin Blocks a Warmth-Sensing Ion Channel TRPV3
Transient receptor potential vanilloid subtype 3 (TRPV3) is a thermosensitive ion channel expressed in a variety of neural cells and in keratinocytes. It is activated by warmth (33-39°C), and its responsiveness is dramatically increased at nociceptive temperatures greater than 40°C. Monoterpenoids and 2-APB are chemical activators of TRPV3 channels. We found that Icilin, a known cooling substan...
متن کاملVoltage- and temperature-dependent activation of TRPV3 channels is potentiated by receptor-mediated PI(4,5)P2 hydrolysis
TRPV3 is a thermosensitive channel that is robustly expressed in skin keratinocytes and activated by innocuous thermal heating, membrane depolarization, and chemical agonists such as 2-aminoethyoxy diphenylborinate, carvacrol, and camphor. TRPV3 modulates sensory thermotransduction, hair growth, and susceptibility to dermatitis in rodents, but the molecular mechanisms responsible for controllin...
متن کاملTonic Inhibition of TRPV3 by Mg2+ in Mouse Epidermal Keratinocytes
The transient receptor potential vanilloid 3 channel (TRPV3) is abundantly expressed in epidermal keratinocytes and has important roles in sensory biology and skin health. Mg(2+) deficiency causes skin disorders under certain pathological conditions such as type 2 diabetes mellitus. In this study, we investigated the effect of Mg(2+) on TRPV3 in primary epidermal keratinocytes. Extracellular Mg...
متن کامل